Медицина будущего

В ближайшем будущем диагностировать болезнь можно будет с помощью мобильных приложений. А первые «здоровые» приложения для Android и iOS появляются уже сегодня.

От диагноза по интернету до микросхем в таблетках...

Cлуховая система

Слуховая система – одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи, как средства межличностного общения. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга через ряд

последовательных отделов, которых особенно много в слуховой системе. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход. В заполненном воздухом среднем ухе находятся три косточки: молоточек, наковальня и стремечко, которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. В результате возбуждения рецепторов происходит генерация импульсного сигнала в волокнах слухового нерва. Сигналы от волосковых клеток поступают в мозг по 32000 афферентных нервных волокон, входящих в состав улитковой ветви VIII пары черепных нервов. Они являются дендритами ганглиозных нервных клеток спирального ганглия. Около 90% волокон идет от внутренних волосковых клеток и лишь 10% - от наружных. Помимо афферентных волокон, спиральный орган иннервируется эфферентными волокнами, идущими из ядер верхне-оливарного комплекса (оливо-кохлеарные волокна). При этом эфферентные волокна, приходящие к внутернним волосковым клеткам, оканчиваются не на самих этих клетках, а на афферентных волокнах. Считают, что они оказывают тормозное воздействие на передачу слухового сигнала, способствуя обострению частотного разрешения. Даже в тишине по волокнам слухового нерва следуют спонтанные импульсы со сравнительно высокой частотой (до 100 в секунду). В центральных отделах слуховой системы много нейронов, возбуждение которых длится в течение всего времени звука. На низких уровнях слуховой системы сравнительно немного нейронов, отвечающих лишь на включение и выключение звука. На высоких уровнях системы процент таких нейронов возрастает. В слуховой зоне коры большого мозга много нейронов, вызванные разряды которых длятся десятки секунд после прекращения звука. К слуховым функциям относятся анализ частоты и интенсивности звука. Слуховые ощущения – тональность (частота) звука, слуховая чувствительность, громкость звука, адаптация и бинауральный слух. Механизмы адаптации в слуховой системе изучены не полностью. Участие в слуховой адаптации нейронных механизмов типа латерального и возвратного торможения несомненно. Раздражение определенных зон ретикулярной формации среднего мозга приводит к угнетению вызванной звуком электрической активности улиткового ядра и слуховой зоны коры. Человек и животных обладают пространственным слухом. Это свойство основано на наличии бинаурального слуха. Для него важно и наличие двух симметричных половин на всех уровнях слуховой системы.

В центральных отделах моста можно видеть толстый пучок идущих поперечно волокон, относящихся к проводящему пути слухового анализатора и образующих трапециевидное тело. В дорсальной части моста лежат волокна медиальной петли, идущей от продолговатого мозга, над которым расположена ретикулярная формация моста. Латеральнее проходят волокна слуховой петли. Функциональное значение среднего мозга состоит в том, что здесь расположены подкорковые центры слуха и зрения.

Кора большого мозга разделяется на новую, древнюю, старую и промежуточную, существенно отличающиеся по строению. Новая кора занимает около 96% всей поверхности полушарий головного мозга и включает затылочную, нижнюю теменную, верхнюю теменную, постцентральную, прецентральную, лобную, височную, островковую, лимбическую области. Височная область имеет отношение к слуховому анализатору [15].

Воздействие любой, самой тяжелой и остро развивающейся формы кислородного голодания не способно мгновенно и одновременно выключить все функции всех отделов нервной системы. Равным образом и для восстановления неврологических функций даже после кратковременной гипоксии требуется некоторое время некоторое время, всегда разное для различных функций [3]. Закономерности угасания функций головного мозга определяются в основном их относительной сложностью, их зависимостью от более или менее чувствительных к гипоксии отделов ЦНС, видом и темпом развития аноксии головного мозга. Установлено, что у человека, а также, по-видимому, у высших животных кора головного мозга обеспечивает в первую очередь наиболее совершенное включение всех компенсаторных механизмов для борьбы с развивающимся процессом умирания [6]. По мере последовательного выключения более сложных и ранимых систем возможно высвобождение более низких и в нормальных условиях частично подавленных функциональных систем. В связи с этим угасание функции центральной нервной системы – это не только явление выпадения, но и временное патологическое возбуждение, которое чаще всего выражается в судорогах децеребрационного характера, а также в усилении активности тех или иных отделов вегетативной нервной системы. Во всех случаях, однако, в первую очередь угасает сознание, позднее всего функция ствола головного мозга [6].

Установлено, что в процессе умирания организма кора мозга ранее других систем головного мозга выключается из борьбы за жизнь. В ней постепенно развивается охранительное торможение, что надо рассматривать не только как неизбежный ход процесса умирания, но и как попытку организма сохранить кору мозга в период наиболее тяжелой истощающей агональной борьбы за жизнь организма [6].

Процесс угасания функций ЦНС в основном (хотя бывают исключения) начинается с угасания более молодых структур мозга, тогда как их восстановление происходит в обратном порядке: в первую очередь восстанавливаются более древние функции и позднее всех наиболее молодые в филогенетическом отношении функции ЦНС. Известно, что любая деятельность, как при агонии, так и в восстановительном периоде, по многим причинам, и прежде всего ввиду необеспеченности энергетическим субстратом, может еще более истощить умирающий или оживающий мозг. Восстановление ЦНС при оживлении подчиняется той же закономерности, что и выключение её при умирании: функция филогенетически более молодых, но более сложных отделов ЦНС восстанавливаются позже и наоборот [4].

Но надо отметить, что порядок восстановления различных отделов ЦНС связан не только с анатомическим уровнем их расположения, но с их функциональным значением для существования организма. Так, например, ядро глазодвигательного нерва, расположенного в среднем мозге, оказывается более стойким и восстанавливается рано. Нижняя олива, хотя и располагается в продолговатом мозге, представляет собой филогенетически более молодое образование, чувствительна к анемизации так же, как и клетки коры [5].

Прежде всего восстанавливаются функции бульбарных центров – сосудодвигательного, дыхательного, центра блуждающего нерва, а затем функции среднего мозга (появляется реакция сужения зрачка на свет). Только после этого этого, а иногда даже после появления роговичного рефлекса возникает спинальный рефлекс в виде сокращения мышцы лапы на пощипывание или ещё позже – сухожильный. Постепенно восстанавливаются подкорковые системы и затем кора мозжечка и больших полушарий [5].

По мере восстановления функций подкорковых образований появляется реакция на боль, исчезают судороги, нормализуется дыхание, сердечно-сосудистая деятельность, обмен веществ. Первые проблески сознания говорят о начавшемся восстановлении функций коры головного мозга. Дальнейший прогноз полноты возврата её функций зависит от сохранности корковых клеток после губительного действия гипоксии [3].

Функции коры также восстанавливаются не одновременно - от более простых к более сложным и молодым. Вначале восстанавливаются системы безусловных рефлексов, материальным субстратом которых являются подкорковые образования. Затем восстанавливаются условные рефлексы, в начале натуральные, затем искусственные. Особенно страдает внутреннее торможение [1].

Следует помнить: когда речь идет о клинической смерти, никаких элементов восприятия внешнего мира не существует. Кора мозга в это время "молчит". На электроэнцефалограмме - прямая линия. Упоминаюшиеся разрозненные восприятия внешнего мира имеют место лишь в периодах умирания, распада функций мозга и центральной нервной системы (ЦНС). Эти впечатления хаотичны, они извращенно отражают реакцию человека на воздействие окружающей среды, будучи продукцией функционально больного мозга. Дольше всего сохраняются слуховые восприятия, тогда как участки коры головного мозга, связанные со зрением, уже погибли и полностью отсутствует двигательная активность [7].

Поскольку в процессе оживления после клинической смерти кора долго "молчит", восстановление всех функций мозга происходит более медленно и постепенно, без резких вспышек.

Корковый анализатор слуха - один из наиболее стойких. Его повышенную устойчивость, наблюдаемую в реанимационной практике, можно в какой-то мере объяснить тем, что он менее кортикализирован (Адрианов О.С., Попова Н.С., 1963; Хананашвили М.М., 1962), причем каждое из звеньев достаточно автоматизировано и передает возбужение на другие образования ствола, в том числе и эфферентные. Волокна слухового нерва, вступая в мост, разветвляются достаточно широко, поэтому выключение одного или даже нескольких пучков этих волокон не обязательно приводит к полной потере слуха, так как они идут билатерально. При выключении коркового отдела слухового анализатора его стволовые уровни могут работать в достаточно самостоятельном, независимом от коры режиме (Меринг Т.А., 1967; Адрианов О.С., 1967,1976). Поскольку в фило- и онтогенезе эта область коры развивается раньше многих других отделов полушарий большого мозга, не исключено, что её нейроны более устойчивы к различным экстремальным воздействиям. Этот факт наталкивает, кстати, на важное этическое соображение: нельзя в присутствии умирающего высказывать суждение о его безнадежном состоянии. Больной уже не может реагировать, но в какой-то мере еще воспринимает сказанное.

Свидетельства оживленных людей говорят о том, что в ряде случаев в процессе умирания (и ни в коем случае не во время клинической смерти, когда мозг "молчит") больной способен воспринимать некоторые явления внешнего мира. Отсюда становится понятным, почему находившийся на пороге смерти и спасенный человек рассказывает о том, что он слышал голоса врачей, но не мог на них реагировать [6].

К началу 60-х годов изучение основных патофизиологических закономерностей угасания и восстановления жизненных функций при умирании и оживлении и рассмторения их с позиций павловского нервизма (Неговский В.А., 1951,1953,1954) привело к необходимости начать специальное исследование состояние высшей нервной деятельности у животных, перенесших клиническую смерть. Опыты проводились на собаках. Было показано, что условный рефлекс исчезает раньше безусловного. В восстановительном периоде после оживления безусловные рефлексы появляются раньше условных. Динамика восстановления высшей нервной деятельности зависит от типологических особенностей нервной системы и от её исходного функционального состояния перед умиранием. А.Р. Котовская (1958) показала, что хотя умирание, клиническая смерть, оживление и ранний

постреанимационный период у собак – представителей разных типов нервной системы – сильный, промежуточный и слабый – протекали одинаково, последующее восстановление заметно различались. Слух у собаки сильного типа восстанавливался через 10 часов после оживления; у собаки промежуточного типа – в течение первых суток, а у собаки слабого типа – в течение 1 месяца.

У людей процесс восстановления проходит через те же стадии, что и у животных. Особой ранимостью у людей обладают функции второй сигнальной системы. При задержке постреанимационной эволюции после восстановления ствола, а иногда и части диэнцефальных систем, у больных формируется картина так называемой гиперактивной комы, или стадия децеребрации (И.И. Астапенко, 1966; Г.А. Акимов, 1971). В стадии выхода из комы у больных могут возникнуть слуховые галлюцинации. «Им слышались музыка, пение хора, и больные как зачарованные, часами лежали, прислушиваясь к малейшему звуку» (Н.Н. Лыга).

      Смотрите также

      Вирусная генетическая информация в трансформированных клетках
      Все трансформированные вирусом клетки содержат его генетический материал. За исключением ДНК вируса ЭБ, который поддерживается в трансформированных им лимфоцитах в виде плазмиды, вирусная ДНК ковал ...

      Энергетические затраты организма
      Методы определения энер­гетической потребности людей. Затраты энергии у человека при­нято делить на нерегулируемые: основной обмен и специфически динамическое действие пищи (пищевой термогенез), и ...

      Хромосомные заболевания
      Благодаря значительным достижениям микробиоло­гии, биохимии и эпидемиологии в нашей стране значите­льно изменилась структура заболеваний населения. Лик­видированы или почти исчезли тяжелые ...





      Витаминоподобные вещества

      Easy to start Еще около 10 соединений имеют витаминоподобные свойства и играют ключевые роли в обменных клеточных процессах организма.

      Читать дальше...

      Рациональное питание

      Россия имеет низкую культуру знаний в отношении питания. Они основаны на традиционных подходах без учета новаторства.

      Читать дальше...

      Минеральные вещества и их значение

      Native RTL Support Минеральные вещества относятся к незаменимым факторам питания и должны в определенных количествах постоянно посту­пать в организм.

      Читать дальше...