Медицина будущего

В ближайшем будущем диагностировать болезнь можно будет с помощью мобильных приложений. А первые «здоровые» приложения для Android и iOS появляются уже сегодня.

От диагноза по интернету до микросхем в таблетках...

Приведение формул обращения томографической реконструкции в конусе лучей к виду, позволяющему строить численные алгоритмы
Материалы / Средства визуализации изображений в компьютерной томографии и цифровых рентгенографических системах / Математические основы компьютерной томографии / Приведение формул обращения томографической реконструкции в конусе лучей к виду, позволяющему строить численные алгоритмы
Страница 3

.

Интеграл по r есть преобразование Фурье от r ++. Используя таблицы для преобразования Фурье обобщенных функций [19], приходим к выражению (2.1.3).

Для действительных функций f(x) в формуле (2) нужна мнимая часть :

.

Используя обобщенные функции, сосредоточенные на поверхности [19], получаем следующее следствие:

.

Здесь S(x ) = {g Î S2½ (x , g ) = 0), v производная по направлению x . Подставляя в (2.1.2) функции и , зависящие от параметра l , получаем формулу обращения, пригодную для построения численных алгоритмов:

(2.1.4)

Здесь S(x ) v окружность, являющаяся пересечением единичной сферы и плоскости P(b ). Плоскость P(b ) проходит через начало координат ортогональна вектору b . Символ W (x ) означает интегрирование по окружности. Оператор L(b , D) означает дифференцирование функции в направлении вектора b :

,

при этом l , зависящее от b и x, остается фиксированным.

Как и выше, b = b (q , j ) = (cosq cosj , cosq sinj , sinq ), l = l (q , j ) = l (x, b ) такое, что скалярное произведение (x, b ) равно (b , g (l )) и (b , g /(l )).

В формуле (4) используются регулярные функции, и она пригодна для построения численных алгоритмов.

Замечание. А.С. Денисюком независимо и другим методом, без явного использования преобразования Фурье обобщенных функций, получены формулы обращения функции g+ в Rn . При n = 3 формулы А.С. Денисюка и формулы, получаемые изложенным способом из формулы Туя, совпадают.

Выше были получены формулы, позволяющие строить численные алгоритмы восстановления функции f(x) = f(x1, x2, x3) по ее лучевому преобразованию

Далее мы будем опускать символ f и использовать обозначение .

При фиксированном S функция является функцией в трехмерном пространстве, но в силу ee однородности существуют поверхности, такие что полностью определяется своими значениями на них (поверхности расположения приемников излучения).

Исходные данные в виде функции удобно использовать, если матрица приемников расположена на сфере. Однако в реальных ситуациях матрицу приемников обычно располагают на плоскости или поверхности цилиндра. В этих случаях удобно использовать несколько иной вид исходных данных.

Плоский детектор.

Мы будем предполагать, что для источника, находящегося в точке S = (s1, s2, s3), исходные данные регистрируются в плоскости P, определяемой уравнением xs1 + ys2 + zs3 = -½ S½ . Плоскость P, определяется следующими условиями:

плоскость P перпендикулярна лучу, соединяющему источник с началом координат;

плоскость P проходит через точку S= (s1, s2, s3.)

Расстояние D между плоскостью регистрации и источником равно удвоенному расстоянию от источника до начала координат. В плоскости регистрации будем использовать прямоугольную систему координат (p1, p2), начало которой находится в точке пересечения с лучем, соединяющим источник с точкой (0, 0, 0). Таким образом, если источник находится в точке S = (s1, s2, s3), то начало системы координат (p1, p2) в плоскости наблюдения находится в точке с трехмерными координатами -s1, -s2, -s3 =- S.

Страницы: 1 2 3 4 5

Смотрите также

Сосуды и нервы туловища собаки
...

Регистрация и документирование данных
С учетом того факта, что в практике оказания медицинской помощи приходится иметь дело с большим объемом информации, не стоит удивляться, что первейшей функцией многих медицинских компьютерных систе ...

История возникновения рвотных и противорвотных препаратов
Раньше в качестве рвотного средства применяли корень ипекакуаны, или рвотный корень, действующим веществом которого является алкалоид эметин. После приёма внутрь корня ипекакуаны рвота наступает не ...





Витаминоподобные вещества

Easy to start Еще около 10 соединений имеют витаминоподобные свойства и играют ключевые роли в обменных клеточных процессах организма.

Читать дальше...

Рациональное питание

Россия имеет низкую культуру знаний в отношении питания. Они основаны на традиционных подходах без учета новаторства.

Читать дальше...

Минеральные вещества и их значение

Native RTL Support Минеральные вещества относятся к незаменимым факторам питания и должны в определенных количествах постоянно посту­пать в организм.

Читать дальше...