Медицина будущего

В ближайшем будущем диагностировать болезнь можно будет с помощью мобильных приложений. А первые «здоровые» приложения для Android и iOS появляются уже сегодня.

От диагноза по интернету до микросхем в таблетках...

Приведение формул обращения томографической реконструкции в конусе лучей к виду, позволяющему строить численные алгоритмы
Материалы / Средства визуализации изображений в компьютерной томографии и цифровых рентгенографических системах / Математические основы компьютерной томографии / Приведение формул обращения томографической реконструкции в конусе лучей к виду, позволяющему строить численные алгоритмы
Страница 3

.

Интеграл по r есть преобразование Фурье от r ++. Используя таблицы для преобразования Фурье обобщенных функций [19], приходим к выражению (2.1.3).

Для действительных функций f(x) в формуле (2) нужна мнимая часть :

.

Используя обобщенные функции, сосредоточенные на поверхности [19], получаем следующее следствие:

.

Здесь S(x ) = {g Î S2½ (x , g ) = 0), v производная по направлению x . Подставляя в (2.1.2) функции и , зависящие от параметра l , получаем формулу обращения, пригодную для построения численных алгоритмов:

(2.1.4)

Здесь S(x ) v окружность, являющаяся пересечением единичной сферы и плоскости P(b ). Плоскость P(b ) проходит через начало координат ортогональна вектору b . Символ W (x ) означает интегрирование по окружности. Оператор L(b , D) означает дифференцирование функции в направлении вектора b :

,

при этом l , зависящее от b и x, остается фиксированным.

Как и выше, b = b (q , j ) = (cosq cosj , cosq sinj , sinq ), l = l (q , j ) = l (x, b ) такое, что скалярное произведение (x, b ) равно (b , g (l )) и (b , g /(l )).

В формуле (4) используются регулярные функции, и она пригодна для построения численных алгоритмов.

Замечание. А.С. Денисюком независимо и другим методом, без явного использования преобразования Фурье обобщенных функций, получены формулы обращения функции g+ в Rn . При n = 3 формулы А.С. Денисюка и формулы, получаемые изложенным способом из формулы Туя, совпадают.

Выше были получены формулы, позволяющие строить численные алгоритмы восстановления функции f(x) = f(x1, x2, x3) по ее лучевому преобразованию

Далее мы будем опускать символ f и использовать обозначение .

При фиксированном S функция является функцией в трехмерном пространстве, но в силу ee однородности существуют поверхности, такие что полностью определяется своими значениями на них (поверхности расположения приемников излучения).

Исходные данные в виде функции удобно использовать, если матрица приемников расположена на сфере. Однако в реальных ситуациях матрицу приемников обычно располагают на плоскости или поверхности цилиндра. В этих случаях удобно использовать несколько иной вид исходных данных.

Плоский детектор.

Мы будем предполагать, что для источника, находящегося в точке S = (s1, s2, s3), исходные данные регистрируются в плоскости P, определяемой уравнением xs1 + ys2 + zs3 = -½ S½ . Плоскость P, определяется следующими условиями:

плоскость P перпендикулярна лучу, соединяющему источник с началом координат;

плоскость P проходит через точку S= (s1, s2, s3.)

Расстояние D между плоскостью регистрации и источником равно удвоенному расстоянию от источника до начала координат. В плоскости регистрации будем использовать прямоугольную систему координат (p1, p2), начало которой находится в точке пересечения с лучем, соединяющим источник с точкой (0, 0, 0). Таким образом, если источник находится в точке S = (s1, s2, s3), то начало системы координат (p1, p2) в плоскости наблюдения находится в точке с трехмерными координатами -s1, -s2, -s3 =- S.

Страницы: 1 2 3 4 5

Смотрите также

Математические основы компьютерной томографии
Исследования внутренней структуры объектов с помощью рентгеновского излучения широко распространены и хорошо известны. Ослабление рентгеновского излучения вдоль луча, соединяющего источник и приемн ...

Прогноз и лечение системных васкулитов
Прогноз системных васкулитов в тот исторический период времени, когда эти заболевания были впервые описаны (XIX век — первая половина XX века), был крайне плохим — почти все заболевшие умирали в те ...

Определение, классификация, этиология терминальных состояний
Терминальные состояния – пограничные между жизнью и смертью состояния, конечные этапы жизни или стадии умирания [1]. Хотя правильнее называть терминальные состояния наиболее крайними, экстремал ...





Витаминоподобные вещества

Easy to start Еще около 10 соединений имеют витаминоподобные свойства и играют ключевые роли в обменных клеточных процессах организма.

Читать дальше...

Рациональное питание

Россия имеет низкую культуру знаний в отношении питания. Они основаны на традиционных подходах без учета новаторства.

Читать дальше...

Минеральные вещества и их значение

Native RTL Support Минеральные вещества относятся к незаменимым факторам питания и должны в определенных количествах постоянно посту­пать в организм.

Читать дальше...