Медицина будущего

В ближайшем будущем диагностировать болезнь можно будет с помощью мобильных приложений. А первые «здоровые» приложения для Android и iOS появляются уже сегодня.

От диагноза по интернету до микросхем в таблетках...

Элементы теории обобщенных функций в применении к задачам обращения лучевого преобразования
Страница 4

Ранее были рассмотрены формулы обращения лучевого преобразования, основанные на явном использовании обобщенных функций, и приемы, позволяющие приводить эти формулы к виду удобному для построения численных алгоритмов.

К выводу формул обращения лучевого преобразования есть другой подход, не использующий обобщенные функции в явном виде. Мы покажем здесь, что фактически этот метод тоже основан на использовании преобразования Фурье в смысле обобщенных функций.

Лучевыми данными называется функция

,

Ф = (Ф1, Ф2, Ф3) Î R3, b Î S2 (S2 v единичная сфера). (Не трудно видеть, что в наших обозначениях это функция ).

В формулах обращения используются следующие функции:

(2.2.9)

, (2.2.10)

(S2/2 - половина единичной сферы), - скалярное произведение векторов и .

Формулы обращения в имеет вид

, (2.2.11)

где , R v радиус шара, в котором содержится носитель функции f(х), -элемент поверхности на единичной сфере.

Если для любого l, такого, что ½ l½ < R и любого b Î S2/2 существует точка Ф на траектории источника такая, что Ф × b = l (выполняются условия Кириллова-Туя), то формула (2.2.11) может быть использована для определения функции f(х).

В отмечается, что функция F при трехмерной томографической реконструкции в конусе лучей в определенной степени аналогична роли преобразования Фурье в двумерной томографии. Этот факт не является случайным.

Действительно, в показано, преобразование Фурье по b в смысле обобщенных функций от функции g(b , Ф) имеет вид

. (2.2.12)

Знаменатель в (2.2.12) может быть равен нулю, и (2.2.12) следует понимать в смысле обобщенных функций. В доказано следующее утверждение.

Если f j Î C2, то

. (2.2.13)

Учитывая (2.2.13), (2.2.12) и (2.2.10) мы видим, что функция , является преобразованием Фурье в смысле обобщенных функций функции g(b , F ), а функция F в формуле обращения определяется функцией .

Страницы: 1 2 3 4 

Смотрите также

Матричная РНК (м РНК) - промежуточный носитель генетической информации
Механизм, благодаря которому генетическая информация ДНК “транскрибируется” в матричную РНК, а затем транслируется в белок, выяснился через несколько лет после того, как молекулярные биологи осозн ...

Опухоли почки
В настоящее время среди всех опухолей почек порядка 90-95 процентов приходится на почечно-клеточный рак, который также нередко называют аденокарциномой почки, гипернефромой, опухолью со све ...

Проблемы и методология
Вирусная частица, или вирион, - это инертная статическая форма вируса. Когда вирионы находятся вне клетки, они не размножаются и в них не происходит никаких метаболических процессов. Все динамич ...





Витаминоподобные вещества

Easy to start Еще около 10 соединений имеют витаминоподобные свойства и играют ключевые роли в обменных клеточных процессах организма.

Читать дальше...

Рациональное питание

Россия имеет низкую культуру знаний в отношении питания. Они основаны на традиционных подходах без учета новаторства.

Читать дальше...

Минеральные вещества и их значение

Native RTL Support Минеральные вещества относятся к незаменимым факторам питания и должны в определенных количествах постоянно посту­пать в организм.

Читать дальше...