Медицина будущего

В ближайшем будущем диагностировать болезнь можно будет с помощью мобильных приложений. А первые «здоровые» приложения для Android и iOS появляются уже сегодня.

От диагноза по интернету до микросхем в таблетках...

Соотношения между преобразованиями Радона, Фурье и лучевым преобразованием

В предыдущих параграфах были рассмотрены формулы непосредственного обращения лучевого преобразования. Существуют также методы томографической реконструкции, основанные на предварительном вычислении преобразования Фурье искомой функции или ее преобразования Радона. Как уже отмечалось ранее, в случае двух переменных лучевое преобразование и преобразование Радона совпадают. В трехмерном пространстве v это разные преобразования.

Для понимания сути методов томографии весьма полезны соотношения между различными видами преобразований. Многие такие соотношения можно получить в пространствах любой размерности. Однако здесь мы будем, как правило, рассматривать практически важные случаи двух и трех переменных.

Соотношение между преобразованиями Радона и Фурье.

Пусть - преобразование Фурье функции f(x1, x2, x3):

.

Интегрируя сначала при фиксированном p по плоскости l 1x1 + l 2x2 + l 3x3 = p, а затем по p приходим к хорошо известному выражению, связывающему преобразования Фурье и Радона

. (2.3.1)

Соотношение между преобразованием Радона и преобразованием Фурье лучевых данных.

В [21] предложен способ инвертирования лучевого преобразования, основанный на том, что по исходным данным восстанавливается преобразование Радона функции f(x)

,

что позволяет по известным формулам восстановить f(x).

При выводе формул обращения в работе используется функция

. (2.3.2)

Можно показать что для функций и справедливо соотношение

, (2.3.3)

здесь С v некоторая константа. Равенства (2.3.2) и (2.3.3) дают связь между преобразованием Радона и лучевым преобразованием в трехмерном пространстве:

, (2.3.4)

Отметим также, что поскольку

, . Равенство (2.3.4) может быть записано в виде . Из последнего равенства и определения функции следует, что функция x постоянна на плоскостях, ортогональных вектору x , так как для всех x, принадлежащих такой плоскости, скалярное произведение (x, x ) равно константе. Этот факт лежит в основе многих методов обращения лучевого преобразования. Это утверждение получено в [40], для случая комплексных пространств. Для действительных пространств это утверждение содержится в работах. Оно и может быть использовано для восстановления функции в точках x, принадлежащих области D, по значениям на ее границах.

Соотношение между преобразованием Фурье лучевых данных и преобразованием Фурье искомой функции f(x).

В работе получено равенство:

, (2.3.5)

устанавливающее связь между преобразованием Фурье лучевых данных и преобразованием Фурье самой функции f, преобразование Фурье понимается в смысле обобщенных функций. Для того, чтобы использовать эту формулу для нахождения функции f нужно иметь формулы для вычисления обобщенного преобразования Фурье по лучевым данным. Такие формулы были приведены выше.

Смотрите также

Лазерное лечение внутриглазной меланомы
Первые попытки использовать интенсивное световое излучение, фокусируемое на внутриглазную меланому с целью ее разрушения, связано с именем G. Meyer–Schwickerath (1952, 1980). Однако, как по ...

Метод Фолля
Из глубины веков доходят до нас легенды о колдунах. И не только в сельской глуши страдающим от непонятных недугов, советовали: "Сходи к бабке". Бабушка наговорила на хлебушко и вод ...

Эпидемиология
В западных странах сосудистая деменция по распространенности занимает второе место после болезни Альцгеймера. В России показатели распространенности сосудистого слабоумия выше, чем болезни Альцгейм ...





Витаминоподобные вещества

Easy to start Еще около 10 соединений имеют витаминоподобные свойства и играют ключевые роли в обменных клеточных процессах организма.

Читать дальше...

Рациональное питание

Россия имеет низкую культуру знаний в отношении питания. Они основаны на традиционных подходах без учета новаторства.

Читать дальше...

Минеральные вещества и их значение

Native RTL Support Минеральные вещества относятся к незаменимым факторам питания и должны в определенных количествах постоянно посту­пать в организм.

Читать дальше...